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Role of Causal Inference

•
 

Clear framework for explaining the role of  
randomization, confounding etc..

•
 

Estimate the causal effect of a treatment

•
 

Set bounds on causal effect

•
 

Control confounding or effect modifiers



What is Causal Effect ?
•

 
The causal effect in an individual is the difference 
between the potential outcomes due to different 
treatments under study.

•
 

Potential outcomes are the values that would have 
been observed had each treatment being given to 
a patient.

•
 

Causal Effect is defined in terms of a comparison 
of the counterfactual failure times associated with 
different exposure/treatment under study. For a 
typical randomized study, we compare the 
average effect of the treatment in the population.



•
 

The goal of many clinical trials or epidemiologic 
studies is to quantify the causal effect of a 
treatment (exposure) on an outcome.

•
 

In contrast, the most commonly used statistical 
methods provide measures of association, not 
necessarily of causal effect.

•
 

These association measures may lack a causal 
interpretation even when the investigator "adjusts 
for" all potential confounders in the analysis of a 
properly designed study. 

What is Causal Effect ?



Randomization

•
 

It produces groups that are similar with respect to 
their baseline characteristics and prognostic 
factors.

•
 

Balances measured and unmeasured confounders 
in the treatment arms.

•
 

Provides a valid basis of inference (enables 
probability statements or p-values).

•
 

Randomization allows us to make inference 
regarding cause and effect of a treatment and a 
clinical outcome.



What’s wrong with observational 
studies?

•
 

Lacks randomization and the estimates for the 
treatment effect may be seriously biased.

•
 

If the treatments are (Drug A and Drug B), 
there is no guarantee that study populations 
(those getting Drug A and Drug B) will be 
equivalent with respect to the risk of the 
disease.

•
 

The ideal situation would have been to give 
everyone Drug A, record their response, go 
back in time and then give Drug B.



Bias of Standard Methods

Consider an observational study and the objective is 
to estimate the change in hazard due to exposure.
The survival model is,

T = ƒ
 

(E, C),  where  E : treatment exposure
C : Confounder

Usual approach to the estimation of the effect of a 
time-varying treatment on survival has been to 
model the hazard of failure at time t as a function of 
past treatment history using time-dependent Cox 
proportional hazard or other regression models.



•
 

Preserves the baseline comparability between 
treatment groups as it retains all randomized 
subjects.

•
 

It does not exclude noncompliers or drop-outs 
from the analysis.

•
 

Comparison of treatments is based on the 
difference of the average response in the treatment 
groups.   

Intent-To-Treat (ITT) analysis



Noncompliance in Clinical Trials
•

 
Non-informative:
The risk of discontinuation or noncompliance  is 
independent of the outcome. i.e. Compliant and 
noncompliant subjects would have identical risk.
This is a strong assumption and is seldom true in 
most of the clinical trials.

•
 

Informative:
Discontinuation or noncompliance provide 
information and influences the outcome.



Complier analysis:
•

 
Compare only those subjects who fully complied with their 
assigned treatment and exclude noncompliers from the analysis.  

•
 

Compliance or noncompliance occurs after
 

randomization and 
excluding them can bias the treatment evaluation.

•
 

The prognostic effect of noncompliance cannot be separated 
from the actual treatment effect.

•
 

The assumption that would justify this analysis is “ignorable 
non-compliance”

 
(Rosenbaum and Rubin-

 
Biometrika

 
1983; 

70:41-55)

•
 

Intent-to-Treat analysis should be the preferred primary 
analysis.

Noncompliance in Clinical Trials



Example-1: Coronary Drug Project

A randomized, multi-center, double-blind, 
placebo-controlled trial comparing  clofibrate (1.8 
g per day) to placebo for the treatment  coronary 
heart disease.  (NEJM, 1980 (303), 1038-1041).

Objective:
 

The Coronary Project was carried out to 
evaluate the efficacy and safety of several lipid 
influencing drugs in the long term treatment of  
Coronary Heart Disease (CHD)



Enrollment and Patient Characteristics

•
 

Enrollment Period: March 1966 to October  
1969, 53 clinical centers

•
 

Men 
•

 
Age from 30 to 64 years

•
 

To qualify, electrocardiographic evidence of 
MI occurred not less than 3 months 
previously

•
 

Clinical visits occurred every four months 
for a minimum of 5 and maximum of 8.5 
years



Treatment 5-year Mortality 
Rate (# of patients)

P-Value

Clofibrate
Placebo

20.0% (n=1103) 
20.9% (n=2789)

P-value= 
0.55

No significant difference between Clofibrate and Placebo (p=0.55).

Example-1: Coronary Drug Project



Treatment 5-Year Mortality 
rate (# of patients)

Clofibrate
Compliance: ≥80%

<80%

Placebo
Compliance: ≥80%

<80%

15.0% (n=708)
24.6% (n=357)
(p-value=.00011) 

15.1% (n=1813)
28.2% (n=882)
P-value=4.7x E-16



•
 

Even if there is a decrease in mortality between the 
good and poor compliance to clofibrate, this effect 
could be confounded by the major differences in the 
patients characteristics and prognosis in the subgroups.

•
 

This subgroup analysis can seriously bias the results 
since the prognostic effect of non-compliance and 
treatment cannot be delineated.

• Other Subgroup analysis:
They have compared compliant (≥80%) clofibrate 
subjects (15%) to all placebo subjects (19.4%) –shows 
significance! So what?

Compliance and Mortality



•
 

Based on the ITT analysis, clofibrate was not 
more beneficial than placebo

•
 

Based on the post-hoc explanatory analysis, the 
decrease in mortality of subjects complying with 
clofibrate shouldn’t be attributed to clofibrate.

•
 

Subgroup analysis of patients based on 
characteristics measured post-randomization will 
not provide a scientifically valid comparison.

•
 

Subgroup analyses are unreliable and can 
introduce serious bias when patients are selected 
into groups that are good or bad with respect to 
compliance or response.

Issues with the study



What is the role of Causal 
Inference in addressing these 

issues?



Potential Outcomes
The data show all potential outcomes under two 
different treatments. Y(0) and Y(1) denotes the 
number of years lived using Drug A and Drug B.

Y(0)
 

Y(1)
10                         13
4                           2
3                           1
4                           2
6                           2
5                           4
7                   6

6                           3



Observed Outcomes
Y(0)

 
Y(1)

10                          ?
?                           2
?                           1
4                           ?
6                           ?
?                           4
7                           ?

?                           3



•Counterfactuals represent the outcomes under     
circumstances that may not have actually occurred

Binary Treatment  :   A =    1 if treated

0, otherwise

Y:  Observed Outcome

Y(0)
 

= potential counterfactual, if untreated
Y(1)

 
= counterfactual, if treated

Using a consistency relation, Y = Y(1) A + Y(0)(1-A)

Counterfactuals



Association:

α
 

=  E(Y |A=0) -
 

E(Y |A=1)

If α ≠ 0, does that mean treatment A has causal effect on Y ?

In a randomized study :  Yes

Observational study     :  Not necessarily (due to confounding)

Causal Effect:
θ

 
= E{Y(1)}  -

 
E {Y(0)} 

In general,

• α ≠ θ
• α

 
is identifiable because it depends only on (A, Y)

•
 

θ
 

is  not easily identifiable because it depends only on            
counterfactuals

Association and Causal Effect



But, if the treatment is randomized then

Y(0), Y(1)   independent of  treatment A.  I.e. Treatment 
assignment is independent of the potential outcomes.

Therefore,

θ
 

= E{Y(1)|A=1}  -
 

E{Y(0)|A=0}

= E(Y| A =1)  -
 

E(Y| A =0)

=  α
So, randomization:

• makes θ
 

and α
 

equal
• makes θ

 
identifiable, since α

 
is a function of (A,Y)

Association and Causal Effect



Suppose Y(0), Y(1) are not independent of  Treatment A 
Then θ ≠ α

But, we can find  a covariate(s) L such that Y(0) and Y(1) 
are independent of  A| L , then θ

 
is identifiable.

When would that be true ?
In a blocked experiment where Treatment A is randomized 
within levels of L

In an observational study L represents all important 
confounders. The best we can hope is that the above 
condition holds approximately. 

Association and Causal Effect



Consistency and Exchangeability

•
 

In randomized experiments association is
 causation because 

–
 

experimental treatment assignment produces 
consistency

–
 

randomization produces exchangeability
•

 
In observational studies
–

 
If no consistency, then counterfactuals are not 
well defined

–
 

If counterfactuals are not well defined then 
causal effects are not well defined



•
 

In a randomized study, the outcomes of the patients who 
received treatment and control are representative samples 
of the outcomes in the population 

•
 

Therefore, the average outcome of those randomized to 
receive treatment is an unbiased estimator for E(Y1

 

)

•
 

Likewise, the average outcome of those randomized to 
receive control is an unbiased estimator for E(Y0

 

)

•
 

Therefore, the difference of these sample average is an 
unbiased estimate of the population average causal effect,

E(Y1) – E(Y0

 

)

Consistency and Exchangeability



Confounding in randomized studies
Randomized study

What if the subjects do not comply with their 
assigned treatment and there are informative 
drop-outs?
Like observational studies, randomized trials 
can also be subject to empirical confounding 
and confounding due to informative dropouts 
and can bias the estimates.



Exchangeability and confounding
Unadjusted Analysis:

The regression of the outcome on the treatment 
relies on the assumption of exchangeability,   

E(Y |A=a) = E  (Ya

 

)

•
 

The outcomes collected on the treated can be used 
to infer about the outcomes we could have seen on 
the untreated had the untreated been treated (and 
vice versa).

•
 

The counterfactual risk in the treated equals the 
counterfactual risk in the untreated
When will the assumption of exchangeability of 
the treated and non-treated be violated?



When there is confounding ,i.e., when a variable
(collected or not) affects both the treatment and
outcome:

W                A              Y

The unadjusted analysis allows investigation of the
marginal effect of A on Y only in the absence of
confounding.

Exchangeability and confounding



•
 

Not realistic in most observational studies
•

 
Acceptable in most randomized studies where 
the treatment is assigned completely at 
random, i.e. independently of the patients’

 characteristics:

W            A              Y
g(A | subject’s characteristics) = g(A)

Exchangeability and confounding



How about Randomized study ?

Y

W

A Y

W

A*

Non-compliance (A*) can lead to 
confounding



Simplest causal inference problem:

•
 

What is the population-level effect of a 
treatment, A, on a clinical outcome, Y ?

More complex causal inference 
problem:

•
 

What is the population-level effect of a 
treatment experienced over time, A(0), . . . 
,A(K), on a clinical outcome, Y ?



L0

 

L1

A0

 

A1

 

Y

Typical Causal Problem

Notation:
Two time points and variables at each time point are dichotomous
L0

 

, L1

 

= Indicator that a confounding variable is present at time 0 and 1
A0

 

, A1

 

= Indicator for treatment observed at time 0 and 1
Y = Outcome



L0

 

L1

A0

 

A1

 

Y

Typical Causal Problem

For multiple time points, IPTW method could  provide 
unbiased estimates of the casual parameters (Robins et. 
al).



Defining Causal Parameters

Question of interest:
What is the causal effect of A on Y?
•

 
To answer this questions, one collects n 
independent and identically distributed (i.i.d.) 
observations of O.

•
 

X = (W, Y0

 

, Y1

 

)
•

 
Using the counterfactual framework, we can 
now formally represent the concept of causal 
effects with causal parameters.



Causal effect representation:
•

 
marginal effect:
–

 
individual level: Y1

 

−
 

Y0

–
 

population level:
β

 
= E(Y1

 

) −
 

E(Y0

 

) or β
 

= E(Y1

 

)/E(Y0

 

)

•
 

Conditional effect
–

 
individual level: Y1

 

−
 

Y0

–
 

population level: β(V ) = E(Y1

 

| V ) −
 

E(Y0

 

| V)
where V⊂W

Defining Causal Parameters



Point-Exposure vs.  
Time-varying Exposure Studies

In a point exposure study, one usually models the 
probability of disease at one point in time as a function of 
exposure and pre-treatment (baseline) covariates.

Time-dependent treatment studies are those where the 
effect of interest is a time-varying treatment or exposure.

In a time-varying exposure study, the traditional or 
standard methods may be biased if time varying covariates 
are simultaneously confounders and intermediates. i.e. 
covariates are predictors of outcome and also predict 
subsequent exposure, and past exposure history predicts 
resulting covariate level (Robins 1991)



Counterfactuals - Recap
•

 
If Y

 
is the outcome, A

 
is the treatment of interest, then 

the ideal scenario is where one observes, for each 
subject, Ya

 

, for each treatment level A=a.

•
 

For example, if there is simply two levels of exposure 
(eg, treatment A= (1

 
, 0) where 1= yes; 0

 
= no), then 

each subject has in theory two counterfactuals, Y0

 

and 
Y1

 

.

•
 

To estimate specific causal effects, we then define 
parameters that relate, for instance, how the means of 
these counterfactuals differ as one changes a.



Challenges in Longitudinal Studies

•
 

Now let us see how the history of treatment (or 
exposure) is causally associated with a future 
outcome in longitudinal studies. 

•
 

For example, let Lj, j=0,1 be the confounders, Aj, j=0,1 
be the treatment/exposures and Y the outcome of 
interest. 

•
 

Assume that the association of interest is on the sum 
of treatment (ΣAj

 

=A0

 

+A1

 

=a) and the outcome Y, at 
the end of the study.



L0

 

L1

A0

 

A1

 

Y

U0

 

U1

[ ] 130210110001 lβlβaββlL,lLa,AA|YE +++====+

In standard analysis, one would adjust for the 
confounders to estimate the coefficient β

 
in 

the following model,

This will not work, since L1

 

is both a confounder 
of A1

 

, and is also on the causal pathway of A0

 

and 
Y and does not have causal interpretation.



Simple Point Exposure or Treatment 
case

•
 

That is, when one has an exposure or treatment of 
interest measured at one time point, and we want to 
find the causal association of the factor of interest on 
an outcome. 

Next few slides will briefly introduce few estimators 
including inverse probability treatment weighting, 
double robust, G-computation and targeted MLE.



Marginal Structural Models
Marginal structural models (MSMs) are  causal models 
for the estimation of the causal effect of a time-

 dependent exposure in the presence of time-dependent 
covariates that may be simultaneously confounders 
and intermediate variables (Robins et. al 1998, 2000; 
Hernan et. al 2001).

Unlike conventional models, they represent causal 
effects based on the concept of potential outcomes. 
MSM estimation is a missing data problem.



•
 

Observed data: O = (W,A, Y )
–

 
Baseline covariate: W  

–
 

Treatment(s): A = (0,1)
–

 
Outcome: Y

•
 

Full data: X = (W, (Ya

 

)a A

 

)  ∼
 

FX

 

, where FX 
denotes the full data distribution

•
 

Assumptions:
–

 
existence of counterfactuals

–
 

time-ordering assumption
–

 
consistency assumption: Y = YA

 

, i.e. the observed
outcome corresponds to one potential outcome.

Statistical framework for point treatment 
studies

∈



Total Effects in Point Treatment 
Studies

Parameters of the distribution of the counterfactuals, Ya

Examples (for binary treatment A (0,1):
marginal effect:
•

 
individual level: Y1

 

−
 

Y0
•

 
population level:

 
β

 
= E(Y1

 

) −
 

E(Y0

 

) or
β

 
= E(Y1

 

)/E(Y0

 

)

Can be expressed as causal OR: 
E[Y1

 

](1-E[Y0

 

])/{E[Y0

 

](1-E[Y1

 

]}=
P[Y1

 

=1](1-P[Y0 =1])/{ P[Y0 =1](1-P[Y1 =1]}
(Expressed in terms of potential outcomes with 

and without exposure to the treatment)



Assumptions

1.Consistency Assumption:  observed data, O
 is O=(A,XA

 

)
 

–
 

i.e., the data for a subject is 
simply one of the counterfactual outcomes 
from the full data.

2.Randomization Assumption:
No unmeasured confounders for treatment.  

In other words: within strata of W, A
 

is 
randomized

3.
 

Experimental Treatment Assignment: 
All  treatments are possible for all              

members of the target population,                  
∀

 
W.

aWYA a ∀⊥ ,|

,0)|( >= WaAP



Point Treatment case: 
Likelihood of Data

•
 

The likelihood of the data factorizes into the 
distribution of interest and the treatment assignment 
distribution.

)|(),|()( WAPWAYPOL =



MSM Estimation

•
 

Traditional Unadjusted Analysis
•

 
G-computation estimation: model for       
E(Y | A,W)

•
 

Inverse weighting estimation: model for 
g(A | W)

•
 

Double robust estimation: model for 
E(Y | A,W) and g(A | W)

•
 

Target maximum likelihood estimation:  
model for both E(Y | A,W) and g(A | W)



MSM estimation

We will discuss three estimators:
•

 
G-computation

•
 

Inverse Probability of Treatment Weighted 
(IPTW)

•
 

Double Robust (DR)
All assume no unmeasured confounding.
All account differently for confounding by modeling
different nuisance parameters:



G-Computation algorithm
G-computation estimation relies on two 
assumptions:

•
 

Randomization assumption (or no 
unmeasured confounders): A ⊥Ya

 

| W, ∀a 
which insures conditional exchangeability.

•
 

Consistent estimation of the nuisance 
parameter
Q(a,W) = E(Y | A,W)



G-computation Method (Robins et. al)

•
 

Based on the earlier assumptions, 
E(Y|A=a,W) = E(Ya

 

|W)

•
 

Then,                                          .

•
 

Which leads to G-comp. estimate of the 
counterfactual mean.

•
 

Regress              vs. a
 

to get an estimate of MSM.

∫ ==
w

aa wdPwWYEYE )(]|[][

∑
=

===
n

i
ia WWaAYE

n
YE

1

],|[ˆ1][ˆ

][ˆ aYE



G-computation implementation

The G-computation estimator of the MSM
parameter can be implemented in a two-step 
procedure:

•
 

estimate Q(A,W) = E(Y | A,W) (e.g. parametrically 
after model selection). We denote the estimate with 
Qn

 

(A,W)
•

 
regress Qn

 

(a,W) on a and V according to the MSM, 
m(a, V | β) (e.g. β0

 

+ β1

 

a) for every possible a.

G computation estimator correspond to the Maximum Likelihood 
Estimator

2
n ))|,(),((Qminarg βββ i

i a
in VamWa −= ∑∑



IPTW analysis
WHY?

The motivation behind the IPTW estimator is that weighting 
observations by their respective propensity score creates a pseudo-

 
population in which treatment assignment is no longer confounded

 
(Robins 1998).

•

 

IPTW calculates the probability of an individual receiving the 
treatment they actually received conditional on their observed 
covariates. i.e. IPTW  models treatment assignment to adjust for

 
confounding and uses these as weights in regression.

•

 

Define g(a|W)

 

=P(A=a| W).

•

 

IPTW estimator is an extension to the longitudinal causal inference 
models of estimators proposed by Hortivtz &Thompson, Greenland, 
Rosenbaum, Robins & Rotnitzky

 

and others…



IPTW Estimators

•
 

Unlike in the observed data, the groups of 
treated and non-treated are exchangeable in 
the weighted data.

•
 

Weighting removes confounding by 
creating a ghost data set where the treatment 
is randomized.

•
 

General estimating function is  

))|,((
)|(

),( βVAmY
WAg
VAh

−

(for stratified by V⊂W MSM)



Example 1: (Hernan et. al, stats in medicine, 2002)

L=0 
(no confounder)

L=1
(Confounder)

A=0 A=1 A=0 A=1

1 Y1 ? 5 ? Y5

2 Y2 ? 6 ? Y6

3 ? Y3 7 Y7 ?

4 Y4 ? 8 ? Y8



L A P(A=a|L)
1 0 0 3/4
2 0 0 3/4
3 0 1 1/4
4 0 0 3/4

5 1 1 3/4
6 1 1 3/4
7 1 0 1/4
8 1 1 3/4



L A [P(A=a|L)]-1

1 0 0 4/3
2 0 0 4/3
3 0 1 4
4 0 0 4/3

5 1 1 4/3
6 1 1 4/3
7 1 0 4
8 1 1 4/3

The inverse of the weights would be used in the IPTW 
method



Example: 2 (Hernan et. al, stats in medicine, 
2002)

Consider a sequentially randomized trial with 
two treatments Zidovudine (A(1)=1) and placebo, 
(A(0)=1), where treatment at time k is randomly 
assigned with the randomization probabilities 
possibly depending upon covariate history and 
past treatment  A(k −

 
1).

• Response = Y
• Objective: Treatment effect of Zidovudine 

on mean CD4 counts



L(1)=high CD4 count, L(0)=Low CD4 counts



Stabilized weights calculation for 
k time points

∏

∏

=

−−

=

−−

===

==
= K

0k
kik1)i(k1kkik

K

0k
1)i(k1kkik

i

]lL,aA|aP[A

]aA|aP[A
sw

It is the ratio of the probability (subject received the 
observed treatment given the past treatment) to 
probability (subject received his observed treatment given 
the past treatment and covariate history).



Ref: Hernan et. al, 2002

Where S(W)=
))0(()]0(),1(|)1([

))0(()]0(|)1([
AfALAf

AfAAf (.63+.15)*.5



Causal effect estimation
Causal effect   =                                  

Where a  =(a(0),a(1))=(1,1) and 
a`=(a(0),a(1))=(0,0)

First and third row are the subjects treated for the duration of the trial and 6 & 
8th

 

are untreated. Standard approach, weights the average by the observed 
number.

E(Ya

 

)= (15 x 100 + 63 x 90) / (15+63) 
= 91.92

E(Ya`

 

)= (5x100 + 9 x 90) / (5+9) =93.57

Therefore, causal effect=91.2-93.57= -1.65
This is biased because L(1) is a confounder on the effect of

 A(1) on Y

)Y(Y E aa ′−



MSM approach using stabilized weights

0.93
54.623.4

x906.54 x1004.23)E(Ya =
+
+

=

0.91
12.61.4

x906.12 x1004.1)E(Y Similarly, a =
+
+

=′

Causal Effect= 2.0



•
 

The IPTW estimate of 2.0 is the estimate of 
β1

 

+ β2 + β3 in the saturated MSM        
E[Ya

 

]= β0

 

+ β1a0

 

+ β2a1

 

+ β3a0a1

•
 

It can be shown that the non-stabilized and 
stabilized estimates will be the same in any 
saturated model.

(Refer to Hernan et. al,  2002)



Double Robust (DR) analysis

•
 

The Double Robust estimator is based on 
the estimating function approach to MSM 
estimation.

•
 

DR estimation is based on a model for both 
nuisance parameters: Q(A,W) = E(Y | A,W) 
and g(A | W)



DR estimator of the MSM parameter

In practice, the DR estimator of the MSM 
parameter can be implemented in a three-

 step procedure:
•

 
Estimate Q(A,W) = E(Y | A,W)

•
 

Estimate g(A | W) 
•

 
Solve the DR estimating equations with the
Newton-

 
Raphson algorithm using the 

estimates from Q and g.



DR Estimation
DR estimation relies on two assumptions:
•

 
The randomization assumption (or no unmeasured

confounders): A ⊥
 

Ya | W, ∀a
•

 
Consistent estimation of one only of the nuisance

parameters: Q(A,W) or g(A | W)
•

 
If g and Q are consistently estimated then the DR
estimator is locally efficient, i.e. in particular more
efficient than the IPTW estimator and as efficient 
as the G-computation estimator.



Targeted MLE (Van der laan and Rubin).

•
 

The Targeted Maximum Likelihood Estimator 
(TMLE) is based on the maximum likelihood 
principle and can be linked to the DR estimating 
approach to MSM estimation to combine the 
attractive properties of both approaches

•
 

TMLE estimation is based on a model for both 
nuisance parameters: Q(A,W) = E(Y | A,W) and 
g(A | W).



Targeted Maximum Likelihood

•
 

MLE-
 

aims to do good job of estimating 
whole density

•
 

Targeted MLE-
 

aims to do good job at 
parameter of interest 

General decrease in bias for parameter of 
Interest
Fewer false positives



TMLE Implementation
•

 
In practice, the TMLE estimator of the 
MSM parameter can be implemented in a 
three-step procedure:

•
 

Estimate Q(A,W) = E(Y | A,W) (Qn(A,W))
•

 
Estimate g(A | W) (gn

 

(A | W))
•

 
An interative two-step procedure which can 
converge in one iteration:
–

 
Update Qn: regress Y on h(A,V ) / g(A|W) with 
Qn as an offset.

–
 

Update βn: regress Qn on A and V according to 
the MSM, i.e.:



TMLE contd…
•

 
TMLE estimation relies on two assumptions:
–

 
the randomization assumption (or no unmeasured 
confounders): 
A ⊥

 
Ya | W, ∀a

–
 

Consistent estimation of one only of the nuisance 
parameters: Q(A,W) or g(A | W)

•
 

Thus in a clinical trials where the model for g is
guaranteed to be correctly specified, the inference is
always valid and one can gain in efficiency.

•
 

The TMLE estimator is easy to implement and the
likelihood can be used to chose the best estimates when
multiple solutions of the DR estimating equations exist.



Summary 
•

 
Causal Inference methodologies are very useful in 
Clinical Trials to improve efficiency.

•
 

Targeted approaches (IPTW or T-MLE estimation 
and marginal structural models) can provide effect 
estimates in settings where
–

 
Randomization is not available (example: Drug safety)

–
 

Standard approaches can give biased estimates in the 
presence of confounding and intermediate variables 
(longitudinal data)
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Thank you!

Contact Info:
Thamban.Valappil@fda.hhs.gov
(301) 796-0828
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